A tropical extremal problem with nonlinear objective function and linear inequality constraints

نویسنده

  • Nikolai K. Krivulin
چکیده

We consider a multidimensional extremal problem formulated in terms of tropical mathematics. The problem is to minimize a nonlinear objective function, which is defined on a finite-dimensional semimodule over an idempotent semifield, subject to linear inequality constraints. An efficient solution approach is developed which reduces the problem to that of solving a linear inequality with an extended set of unknown variables. We use the approach to obtain a complete solution to the problem in a closed form under quite general assumptions. To illustrate the obtained results, a two-dimensional problem is examined and its numerical solution is given. Key-Words: idempotent semifield, nonlinear functional, linear inequality, matrix trace, spectral radius, tropical extremal problem, closedform solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

A multidimensional tropical optimization problem with nonlinear objective function and linear constraints

We examine a multidimensional optimisation problem in the tropical mathematics setting. The problem involves the minimisation of a nonlinear function defined on a finite-dimensional semimodule over an idempotent semifield subject to linear inequality constraints. We start with an overview of known tropical optimisation problems with linear and nonlinear objective functions. A short introduction...

متن کامل

Algebraic solutions of tropical optimization problems

We consider multidimensional optimization problems, which are formulated and solved in terms of tropical mathematics. The problems are to minimize (maximize) a linear or nonlinear function defined on vectors of a finite-dimensional semimodule over an idempotent semifield, and may have constraints in the form of linear equations and inequalities. The aim of the paper is twofold: first to give a ...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

A constrained tropical optimization problem: complete solution and application example

A multidimensional optimization problem is considered, which is formulated in terms of tropical mathematics as to minimize a nonlinear objective function subject to linear inequality constraints. The optimization problem is motivated by a problem in project scheduling when an optimal schedule is given by minimizing the flow time of activities in a project under various activity precedence const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1212.6106  شماره 

صفحات  -

تاریخ انتشار 2012